
Rhizomatica Communications Final Report

Project Name: Digital HF Telecommunications for Civil and Amateur Uses

Please share your results and anything else you would like us to know about your work:

Attachment:

(ATTACHMENT) FINAL REPORT
RHIZOMATICA-ARDC

Grant Start Date: December 8, 2021
Grant End Date: February 1, 2023 (extended to March 31)

HF transceivers:

What we proposed: Improve our existing narrowband (3kHz) design. We have already built 10 v1
prototypes of the narrowband version, and will make further refinements towards a v2. This will
include adding a GPSDO for precise frequency synthesis, power management for optimized battery
use, built-in self-tests for better problem identification and embedded A/D and D/A converters to
avoid use of computer sound cards for radio-computer connection.

What we did: We completed the GPS integration with the radio. The GPS (any model with PPS
output can be used, we opted for the uBlox) provides a GPSDO capability to the radio LO (PPS
used for this) and precise wall-clock to the Linux running in the computer connected to the radio
(through USB connection). The board is a drop-in replacement to the original Raduino board of the
original µBitx v6 (which our radio is based upon).
Arduino firmware code here:
https://github.com/Rhizomatica/hermes-net/tree/main/trx_v1-firmware
Userland code here:
https://github.com/Rhizomatica/hermes-net/tree/main/trx_v1-userland
Gerbers:
https://github.com/Rhizomatica/hermes-documentation/blob/main/gerbers/
raduino_3903383A_Y7.rar

We improved our reflected and forward power measurement board (lambda bridge), which now has
more stable and precise behavior versus previous versions.

We built 15 of these evolved versions of our radio. Five units were sent to the Brazilian Amazon, to
be used by indigenous communities in the state of Rondônia, where they were successfully
installed. Eight units were sent to Ecuador, to indigenous communities in the Pastaza, Sucumbios

https://github.com/Rhizomatica/hermes-net/tree/main/trx_v1-firmware
https://github.com/Rhizomatica/hermes-documentation/blob/main/gerbers/raduino_3903383A_Y7.rar
https://github.com/Rhizomatica/hermes-documentation/blob/main/gerbers/raduino_3903383A_Y7.rar
https://github.com/Rhizomatica/hermes-net/tree/main/trx_v1-userland

and Morona Santiago regions, and were also installed. The final two units stayed with us for testing.
We carried out many tests during the grant period ranging from a few kilometers up to 650 km,
typically using simple inverted V dipoles in the 5 MHz to 7 MHz frequency range.

What we proposed: Development of a wideband transceiver (up to 48kHz Tx and Rx bandwidth)
prototype, which will allow higher transmission data rates and more concurrent users.

What we did: We researched two candidates for the base design of our wideband transceiver: the
HermesLite2 and the sBitx. We did initial tests with both sBitx and HermesLite2 with success..
While the HermesLite2 has good signal synthesis and good reception, we had problems sourcing it,
as it uses an FPGA which was hard to find due to supply chain issues. We managed to buy 4 units
from Makerfabs (https://www.makerfabs.com/) using refurbished FPGAs. An additional
consideration around the HermesLite2 is that the maximum tx power is 5W. The other candidate,
the sBitx (https://www.hfsignals.com/index.php/sbitx/), uses much simpler, standard electronic
components, and no FPGA. The stock sBitx can provide up to 50W (we managed to extract up to
60W with larger heat sinks just to test its limits). Our decision, therefore, is to base our wideband
transceiver on the sBitx. While the decision about the hardware was made, our software-defined
modem for wideband HF (Mercury) is not yet totally ready, so it will take a bit more time for us to
have a full solution for wideband HF.

Modem:
What we proposed: Based on existing open-source OFDM modem implementations, we will add
Media Access Control, channel aggregation, Automatic Repeat Request and Automatic Link
Establishment logic in a way that allows the system to be used without any prior knowledge of HF
operation. The system will allow multiple users to be concurrently connected, though the use of
both time division and frequency division multiplexing.

What we did: We first carried out research on available OFDM modems, especially the one used by
FreeDV and FreeDATA (David Rowe’s OFDM implementation available here:
https://github.com/drowe67/codec2/blob/master/README_ofdm.md). We realized we need many
different modes and higher performance OFDM/LDPC codes for our modem, in order to have the
maximum possible throughput and efficient adaptive modulation (gear shifting), so we decided to
write the modulation and LDPC from scratch. The modem developed during the year, called
Mercury, uses state-of-the-art LDPC coding in 3 different code rates, supports many different
OFDM modes (BPSK, QPSK, 16QAM and 64 QAM) and configurable bandwidth, guard interval,
number of carriers and number of pilot carriers. Our new modem can adapt to very different
channel conditions, for example, very low SNR up to high SNR, different doppler shift and spread
and different multipath conditions. All the development put in the modem this year will allow the
development of powerful adaptive links between stations, which will include modulation and
coding adaptation given the available channel conditions. The modem also reports many parameters
of the incoming signal, such as SNR and signal strength, which will allow for the development of a
sophisticated MAC layer. We implemented a basic Automatic-Repeat-Request (ARQ) logic which
makes the modem already useful for reliable data exchange. The ARQ code, still under active,
heavy development, is available here:
https://github.com/Rhizomatica/mercury/tree/arq_alpha

We did not complete the development of the multiple users medium access (at this point, it is only
point-to-point) nor the adaptive modulation selection (aka “gear shifting”), but we advanced on the
understanding of the different modes of the modem. Next steps include the development of the logic
for selection of the optimal modes to be used given a channel propagation condition, and the
extension of the MAC layer to allow for multiple users medium access.

Relevant code of our modem is here:
https://github.com/Rhizomatica/mercury

https://github.com/Rhizomatica/mercury
https://github.com/drowe67/codec2/blob/master/README_ofdm.md
https://www.hfsignals.com/index.php/sbitx/
https://www.makerfabs.com/
https://github.com/Rhizomatica/mercury/tree/arq_alpha

Figure 1: Mercury Soft-Modem diagram.

Overview:
Fig. 1 demonstrates the block diagram for Mercury software-defined modem that features an
Orthogonal Frequency-Division Multiplexing (OFDM) modulator/demodulator with a Low-Density
Parity-Check (LDPC) error correction code encoder/decoder with an embedded Additive White
Gaussian Noise (AWGN) channel simulator.

Design:
The Mercury software modem was designed as high-performance modular C++ code to allow for
further development and enhancement. High configurability was set as a priority avoiding hard-
coded configuration to provide an adaptable modem for a wide range of necessities, environments,
and hardware.

The modem was created without the use of external libraries (except for the ALSA Audio driver)
permitting its porting to any operating system that supports a standard C++ compiler including
embedded systems.

The modem was successfully tested on standard Intel-based computers with a 2 GHz processor and
a couple of Gigabytes of RAM as well as a Raspberry Pi 3. The total memory requirement is under
10 MB.

OFDM:
The OFDM modulator and demodulator were designed with configurable bandwidth, configurable
Fast Fourier Transform (FFT) size, configurable guard interval to remove the inter-symbol
interference effect, and a configurable number of sub-channels.

OFDM Framing and Pilots - The implemented dynamic framing allows for a configurable number
of symbols per OFDM frame, and configurable distribution of pilots via two parameters (Dx:
frequency distance between pilots and Dy: time distance between pilots), Pilot boost is possible as
well to define pilot carriers' power in relation to data carriers' power.

Bit Interleaving:
The bit interleaving and deinterleaving were implemented with the interleaving block size to
combat pulse noise.

Modulation:
The modulation and demodulation blocks were implemented with six uniform constellation options:
(BPSK, QPSK, 8QAM, 16QAM, 32QAM, 64QAM) and an approximate Log Likelihood soft
demodulation to permit the deployment of powerful forward error correction codes.

Error Correction:
Forward error correction codes in the form of state-of-the-art LDPC codes were designed by a
specially built Artificial intelligence agent (based on Artificial Immune Systems) and implemented
with the size 1600 bits with three different code rates that define the protection level vs data rate
(2/16, 8/16, 14/16).

The low-complexity Gradient Bit-Flipping (GBF) LDPC decoder with a configurable number of
maximum decoding iterations was selected as our LDPC decoder.

Up/Down Frequency converters:
The conversion of the generated baseband signal to an intermediate passband signal at the
transmission point was implemented with a configurable carrier frequency and output power. The
produced passband signal can be interpolated to match the required output sampling frequency.

The conversion of the intermediate passband signal back to a baseband signal at the receiving end
was implemented with a built-in Finite Impulse Response Filter designer with configurable
transition bandwidth, cut frequency, and different window options (Rectangular, Hamming,
Hanning, Blackman). The input passband signal can be decimated before passing it to the OFDM
processing blocks.

The ALSA sound driver is used to interface the Mercury soft-modem blocks with the RF radio via
the audio interface.

Synchronization:
Time synchronization is used to detect the start of each OFDM symbol and frame and was
implemented with a configurable number of time synchronization detection peaks to be considered.
A time synchronization lock was implemented to allow for phase symbol detection in case of
successive OFDM frames without extra processing. Additionally, the number of symbols to be used
in time synchronization is configurable.

To compensate for the carrier frequency offset (CFO) due to the Doppler shift and oscillators'
frequency offset due to changes in temperature, a frequency synchronization was implemented with
a configurable CFO sensitivity.

Channel Estimation and Equalization:
To reverse the channel effect and time synchronization mismatches, a channel estimator and
equalizer are used. The channel estimator used the known transmitted pilots to calculate the channel
effect in their sub-channels and the noise variance, then via one dimension and time and frequency
interpolation predicts the channel effect in the data sub-carriers.

Once the channel is estimated, the channel equalizer performs the amplitude and phase correction
for the data sub-carriers of the OFDM symbols.

Built-in Simulation:
Mercury operates in two simulation modes to provide the user with a prediction of the configuration
performance, both simulation modes use an AWGN channel.

A baseband simulation permits the evaluation of the modulation and error correction capacity, while
the passband simulation allows for the full transmission and reception stages to be simulated. The
results can be printed on the terminal screen or (optionally) can be plotted using the Gnuplot library.

Test Modes:
Two test modes can be used, a random data transmission test mode or a reception test mode
with/without plotting

TCP/IP interface:
An embedded TCP/IP interface was implemented to permit Mercury to act as a transparent data
tunnel allowing for simpler and more efficient interface implementation.

Built-in Measurement:
In addition to the audio signal strength measurement, a Signal-to-Noise Ratio (SNR) is measured
for the successfully decoded messages. Additionally, calculations such as Shannon limit, and bit rate
available to the user were implemented to provide useful information to the user.

Tests:

During the development of the Mercury modem, several Black-Box, and White-Box tests were
performed to ensure the functionality of each of the modem blocks. In addition, several simulations
and performance tests were performed to evaluate the modem processing requirements and error-
free data transmission capability.

A. Loop-Back test: This test was done via an audio loop-back connection and the deployment of the
built-in AWGN channel simulator to evaluate the Mercury modem performance in comparison to
the theoretical curves. Fig. 2 demonstrates the results of one of the passband simulation for BPSK
modulation and an LDPC code with the code rate 2/16.

Figure 2: Passband Simulation for BPSK with LDPC 2/16.

B. Channel Simulator test: Once the Loop-Back test was successful, the IONOS Propagation
Simulator shown in Fig. 3 was used as an additional externally-developed channel simulator to
confirm the test results.

Figure 3: IONOS Propagation Simulator.

C. µBitx Air Gap test: The air gap test was performed by using two µBitx radios with dummy loads
and transmission over a small air gap to ensure compatibility between Mercury and the µBitx
hardware over different bandwidths and carrier frequencies.

D. Field test: The field test was performed over a 2.3 KHz bandwidth and 7115 Mhz carrier
frequency over 90 km and 400 km distances. Fig. 4 shows the antenna setup of one of the test
stations used in this phase. While the connection was established with error-free messages received
when the channel conditions were relatively good (no interference from other radios and high
SNR), poor channel conditions resulted in a loss of connection thus promoting the necessity for
further development for poor channel conditions and low SNR values.

Figure 4: The antenna setup at one of the test stations.

Network topologies:

What we proposed: Point-to-point topology; Star topology; Mesh topology,

What we did: We implemented the Point-to-Point and Star topologies using VARA and Mercury, but
other multi-point or mesh network topologies will only be implemented after we finish all the
needed support in Mercury and our evolved MAC layer implementation.

Data exchange modes:

What we proposed: asynchronous UUCP data exchange, especially for email and file exchange.

What we did: We successfully implemented asynchronous data exchange with the use of the UUCP
protocol, which supports VARA and ARDOP modems, and is ready to support our modem
(Mercury). Relevant code is here:
https://github.com/Rhizomatica/hermes-net/tree/main/uucpd

What we proposed: synchronous data exchange, including IP-based services like messaging and
web.

What we did: While we can not yet do synchronous data exchange, because we don’t have the
needed support in the lower network layers yet (we are using just UUCP for now). We are

https://github.com/Rhizomatica/hermes-net/tree/main/uucpd

experimenting with bridging some services over email. We have tested bridging SMS, relevant code
here:
https://github.com/Rhizomatica/hermes-messaging/
And web content using the Webxdc standard (https://webxdc.org/).

We also implemented sensor data (for now, charge controller and GPS data) gathering and
transmission. Relevant code here:
https://github.com/Rhizomatica/hermes-sensors

Audio and Image encoding:
What we proposed: Evaluate the quality and computer complexity of state-of-the-art neural-
network based audio and image encoders, like LPCNet, Lyra and SSMGAN for audio, and HIFIC
for images. These codecs will be used for audio and image encoding (or transcoding) for both
asynchronous and synchronous types to reduce payload size.

What we did: We tested three neural-network based audio encoders: LPCNet
(https://github.com/xiph/LPCNet), Lyra (https://github.com/google/lyra) and NESC1 (based on
SSMGAN). The lowest rates these codecs can do are: LPCNet at 1.6 kbps, Lyra at 3.2 kbps and
NESC at 1.6 kbps. NESC is not open source (yet), and we signed an NDA with Fraunhofer Institute
in order to use it. NESC provides the best quality and is somewhat tolerant to background noise,
while LPCNet is the best open-source audio codec available, providing good speech quality when
background noise is not high. Lyra’s bitrate is too high for the audio quality it provides when
compared to LPCNet, which justifies our decision not to use it. We adopted LPCNet as our audio
exchange codec, and we are using NESC for selected communities for evaluating the need for an
improved open-source low-bitrate audio codec.

We tested many visual/video codecs, both machine-learning and non-machine-learning based. The
machine-learning based ones, especially the HiFiC
(https://github.com/tensorflow/compression/tree/master/models/hific) require too much resources
(sometimes more than 16GB of RAM if no GPU is available), and most of them require a powerful
GPU. So we opted to use the state-of-the-art H.266 (VVC) standard to compress still images.

The results of the compression of audio and image samples are available here:
https://hermes.radio/qa/

The code to compress images is available here:
https://github.com/Rhizomatica/hermes-net/tree/main/system_scripts/compression

Packages for the encoders are available here:
http://packages.hermes.radio/

Some scripts and the data-set used for the quality assessment experiment are here:
https://github.com/Rhizomatica/hermes-qa/

We integrated the transcoding of audio and image to LPCNet (or NESC) and VVC respectively in
the email pipeline UUCP transport here:
https://github.com/Rhizomatica/hermes-net/tree/main/uuxcomp

Additional Resources: Photos, Media coverage, etc.

Our website with some photos and video:
https://www.rhizomatica.org/hermes/

- Media publications about the HERMES deployment in Brazil:
https://rondoniaovivo.com/noticia/geral/2022/06/04/protecao-aldeias-indigenas-de-ro-terao-sistema-
inedito-de-monitoramento-no-brasil.html (Portuguese)

1Refer to: “Pia, N., Gupta, K., Korse, S., Multrus, M., Fuchs, G., 2022, NESC: Robust Neural End-2-End
Speech Coding with GANs. Proc. Interspeech 2022, 4212-4216, doi: 10.21437/Interspeech.2022-430”

https://github.com/xiph/LPCNet
https://github.com/Rhizomatica/hermes-net/tree/main/uuxcomp
https://github.com/Rhizomatica/hermes-qa/
http://packages.hermes.radio/
https://github.com/Rhizomatica/hermes-net/tree/main/system_scripts/compression
https://hermes.radio/qa/
https://github.com/tensorflow/compression/tree/master/models/hific
https://github.com/google/lyra
https://webxdc.org/
https://rondoniaovivo.com/noticia/geral/2022/06/04/protecao-aldeias-indigenas-de-ro-terao-sistema-inedito-de-monitoramento-no-brasil.html
https://rondoniaovivo.com/noticia/geral/2022/06/04/protecao-aldeias-indigenas-de-ro-terao-sistema-inedito-de-monitoramento-no-brasil.html
https://www.rhizomatica.org/hermes/
https://github.com/Rhizomatica/hermes-sensors
https://github.com/Rhizomatica/hermes-messaging/

https://www.earthnewsterra.com.br/noticias/novo-sistema-de-internet-de-baixo-custo-chega-a-
aldeias-em-rondonia/ (Portuguese)
https://www.earthnewsterra.com/news/new-low-cost-internet-system-reaches-indigenous-
communities-in-the-amazon/ (English)

- Blog post about HERMES (photos of the deployment in Brazil, Rondonia state):
https://connecthumanity.fund/connecting-the-most-remote-communities/

- APC online publication (photos from both Brazil and Ecuador deployments):
https://www.apc.org/en/blog/seeding-change-rhizomaticas-high-frequency-radio-showcases-power-
communication-remote-regions

- 48percent.org blog posts:
https://web.archive.org/web/20221215111202/https://www.48percent.org/using-high-frequency-
digital-radio-systems-to-connect-amazonian-communities/
https://www.48percent.org/blog/community-radio-services-for-indigenous-communities-across-
ecuadorian-amazon/

- Interview (video) in late 2022 about HERMES (in Portuguese):
https://www.youtube.com/watch?v=MAc2yjTRiPE

- Presentation in February 2023 at OsmoDevCall (
https://osmocom.org/projects/osmo-dev-con/wiki/OsmoDevCal):
Slides: https://github.com/Rhizomatica/hermes-documentation/blob/main/presentation/
presentation_osmodevcall/2023-01-OSMO-presentation.pdf
Video: https://downloads.osmocom.org/videos/osmodevcall/osmodevcall-20230215-rafael2k-long-
range-hf-comm_h264_420.mp4

https://downloads.osmocom.org/videos/osmodevcall/osmodevcall-20230215-rafael2k-long-range-hf-comm_h264_420.mp4
https://downloads.osmocom.org/videos/osmodevcall/osmodevcall-20230215-rafael2k-long-range-hf-comm_h264_420.mp4
https://github.com/Rhizomatica/hermes-documentation/blob/main/presentation/presentation_osmodevcall/2023-01-OSMO-presentation.pdf
https://github.com/Rhizomatica/hermes-documentation/blob/main/presentation/presentation_osmodevcall/2023-01-OSMO-presentation.pdf
https://osmocom.org/projects/osmo-dev-con/wiki/OsmoDevCal
https://www.youtube.com/watch?v=MAc2yjTRiPE
https://web.archive.org/web/20221215111202/https://www.48percent.org/using-high-frequency-digital-radio-systems-to-connect-amazonian-communities/
https://web.archive.org/web/20221215111202/https://www.48percent.org/using-high-frequency-digital-radio-systems-to-connect-amazonian-communities/
https://www.apc.org/en/blog/seeding-change-rhizomaticas-high-frequency-radio-showcases-power-communication-remote-regions
https://www.apc.org/en/blog/seeding-change-rhizomaticas-high-frequency-radio-showcases-power-communication-remote-regions
https://connecthumanity.fund/connecting-the-most-remote-communities/
https://www.earthnewsterra.com/news/new-low-cost-internet-system-reaches-indigenous-communities-in-the-amazon/
https://www.earthnewsterra.com/news/new-low-cost-internet-system-reaches-indigenous-communities-in-the-amazon/
https://www.earthnewsterra.com.br/noticias/novo-sistema-de-internet-de-baixo-custo-chega-a-aldeias-em-rondonia/
https://www.earthnewsterra.com.br/noticias/novo-sistema-de-internet-de-baixo-custo-chega-a-aldeias-em-rondonia/

